On Integrable Systems Related to Semisimple Lie Groups

dc.authorscopusid6701687590
dc.contributor.authorKerimov G.A.
dc.date.accessioned2024-06-12T10:28:33Z
dc.date.available2024-06-12T10:28:33Z
dc.date.issued2000
dc.description.abstractQuantum scattering systems related to the noncompact semisimple Lie groups G in the sense that the Hamiltonian of the system can be written as a function of the Casimir operator of G are considered. The S-matrix for such systems are defined in terms of an interwining operator of underling symmetry group G.en_US
dc.identifier.endpage396en_US
dc.identifier.issn1300-0101
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-0347370618en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage385en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14551/17293
dc.identifier.volume24en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofTurkish Journal of Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[Abstarct Not Available]en_US
dc.titleOn Integrable Systems Related to Semisimple Lie Groupsen_US
dc.typeArticleen_US

Dosyalar