Yazar "Yalcin, Gozde" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures(Elsevier, 2017) Aswathy, V. V.; Alper-Hayta, Sabiha; Yalcin, Gozde; Mary, Y. Sheena; Panicker, C. Yohannan; Jojo, P. J.; Kaynak-Onurdag, FatmaN-[2-(2-bromophenyl)-1,3-benzoxazol-5-yl]-2-phenylacetamide (NBBPA) was synthesized in this study as an original compound in order to evaluate its antibacterial activity against representative Gram-negative and Gram-positive bacteria, with their drug-resistant clinical isolate. Microbiological results showed that this compound had moderate antibacterial activity. Study also encompassed detailed FT-IR, FT-Raman and NMR experimental and theoretical spectroscopic characterization and assignation of the ring breathing modes of the mono-, ortho- and tri-substituted phenyl rings is in agreement with the literature data. DFT calculations were also used to identify specific reactivity properties of NBBPA molecule based on the molecular orbital, charge distribution and electron density analysis, which indicated the reactive importance of carbonyl and NH2 groups, together with bromine atom. DFT calculations were also used for investigation of sensitivity of the NBBPA molecules towards the autoxidation mechanism, while molecular dynamics (MD) simulations were used to investigate the influence of water. The molecular docking results suggest that the compound might exhibit inhibitory activity against GyrB complex. (C) 2017 Elsevier B.V. All rights reserved.Öğe Synthesis and molecular docking studies of some novel antimicrobial benzamides(Academic Press Inc Elsevier Science, 2020) Acar, Cemre; Yalcin, Gozde; Ertan-Bolelli, Tugba; Onurdag, Fatma Kaynak; Okten, Suzan; Sener, Funda; Yildiz, IlkayCommon use of classical antibiotics has caused to the growing emergence of many resistant strains of pathogenic bacteria. Therefore, we aimed to synthesize a number of N-(2-hydroxy-(4 or 5)-nitrophenyl)benzamide derivatives as a new class of antimicrobial compounds. Moreover, our second goal is to predict the interaction between active structures and enzymes (DNA-gyrase and FtsA) in the binding mode. In this study, thirteen N-(2-hydroxy-(4 or 5-nitrophenyl)-substituted-benzamides were synthesized and determined for their antimicrobial activity using the microdilution method. According to this work, none of the compounds showed any activity against Candida albicans and its clinical isolate. Some of the benzamides (4N1, 5N1, 5N2) displayed very significant activity against Staphylococcus aureus and MSSA with < 4 mu g/ml MIC value, even they were found to be more potent than ceftazidime. 4N1 was also found to be more effective than gentamicin against Enterococcus faecalis clinical isolate. Molecular docking studies revealed that 4N1, 5N1, and 5N2 showed a good interactions with DNA-gyrase. Moreover, 5N1 has interacted with FtsA enzyme in the binding mode, as well. Only compound 5N4 displayed very good activity against Escherichia coli ATCC 25922. These findings showed us that 4N1, 5N1, 5N2, and 5N4 could be lead compounds to discover new antibacterial candidates against multidrug-resistant strains.