Yazar "Sahin, Anil" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of Aging Time at High Temperature on the Shear Strength of Adhesively Bonded Aluminum Composite Foam Joints(Taylor & Francis Ltd, 2019) Taskin, Nilhan Urkmez; Sahin, AnilIn this study, the shear strength behavior of adhesively bonded joints, made of aluminum composite foams subjected to high-temperature processes, has been investigated. Aluminum composite foam and solid aluminum blocks were used to form single lap joints and as the binder, a methacrylate-based structural adhesive has been selected. Foam-foam and solid-foam joints were formed and cured at room temperature for 24 hours. After curing process, aging at 200 C-o was performed on the samples for 15, 30, 45, 60 minutes. The aged samples were subjected to lap shear testing for adhesively bonded metals and the influences of aging duration on joint strength and failure type were investigated. As a result, lower strengths were obtained in all samples that aged under high temperature compared to non-aged samples. After the application of short-term (15-30 min) aging processes on samples, it is observed that they have joint strength values about 50% of the joint strength of non-aged samples. However, strength values of short-term aged joints (15, 30 min) remain higher than the strength values of the foam materials used in the tests. These results show that methacrylate-based adhesives subjected to short-term thermal loads up to 200 degrees C can be used in constructions.Öğe Investigation of mechanical and printing properties of poly(lactic acid) and its composite filaments used in 3D printing(Springer, 2024) Sahin, Goekcen; Ozyildirim, Hasan; Sahin, AnilIn this work, we investigated how the mechanical and printing properties of poly(lactic acid) (PLA) and its composite filaments, which are increasingly used in 3D printers, changed in a humid environment. PLA filament, PLA/Graphite, and PLA/polyhydroxybutyrate (PHB) composite filaments were used in these experiments. The filaments were exposed to 80% relative humidity for 15 days, and standard dog-bone specimens were printed by these filaments. Tensile tests were applied to the filaments and printed specimens, Fourier transform infrared spectrometry (FTIR) was performed, and scanning electron microscopy (SEM) micrographs of the specimens and their fractured surfaces were obtained. The tensile strength of the PLA filament, PLA/Graphite, and PLA/PHB composite filaments exposed to a humid environment decreased compared with the reference specimens. When the experiments were evaluated, it was observed that the print quality and tensile strength decreased in dog-bone specimens printed from PLA filament and PLA/Graphite composite filament exposed to a humid environment. The tensile strength decreased in the PLA specimen by 29.5% and the PLA/Graphite composite specimen by 28% compared with the reference specimens. In contrast, for dog-bone specimens printed from PLA/PHB composite filaments, print quality and tensile strength increased. The tensile strength increased by 8.5% in PLA/PHB composite specimens. The band changes in the FTIR spectra of the dog bone and conditioned specimens produced from PLA filament, PLA/Graphite, and PLA/PHB composite filaments showed the chemical changes in the specimens.