Yazar "Aydin, Tuba" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A new PANI biosensor based on catalase for cyanide determination(Taylor & Francis Ltd, 2016) Ozcan, Hakki Mevlut; Aydin, TubaCyanide is one of the most widespread of compounds measured in environmental analysis due to their toxic effects on environment and health. We report a highly sensitive, reliable, selective amperometric sensor for determination of cyanide, using a polyaniline conductive polymer. The enzyme catalase was immobilized by electropolymerization. The steps during the immobilization were controlled by electrochemical impedance spectroscopy. Optimum pH, temperature, aniline concentration, enzyme concentration, and the number of scans obtained during electropolymerization, were investigated. In addition, the cyanide present in artificial waste water samples was determined. In the characterization studies of the biosensor, some parameters such as reproducibility and storage stability, were analyzed.Öğe Ultrasensitive Impedimetric Biosensor Fabricated by a New Immobilisation Technique for Parathyroid Hormone(Springer, 2015) Ozcan, Hakki Mevlut; Yildiz, Kubra; Cakar, Cansu; Aydin, Tuba; Asav, Engin; Sagiroglu, Ayten; Sezginturk, Mustafa KemalThis paper presents a novel ultrasensitive and rapid impedimetric biosensor with new immobilisation materials for parathyroid hormone (PTH) with the aim to determine the PTH level in serum for the diagnosis and monitoring of parathyroid diseases such as hyperparathyroidism, adenoma, and thyroid cancer. The interaction between PTH and the biosensor was investigated with an electrochemical method. The biosensor was based on the gold electrode modified by mercaptohexanol (6-MHL). Anti-parathyroid hormone (anti-PTH) was covalently immobilised onto a self-assembled monolayer (SAM) by using epiclorhidrina (EPI) with ethanolamine (EA). The EPI-EA interaction represents the first use of these for the construction of biosensors in published reports. The immobilisation of the anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscopy (SEM) techniques. After the optimisation studies of immobilisation materials such as 6-MHL, EPI, EA and glutaraldehyde, linearity, repeatability and sensitivity of biosensor were evaluated as the performance of biosensor. PTH was detected within a linear range of 0.1-0.6 pg/ml, and the detection limit was 0.1 fg/ml. The specificity of the biosensor was also investigated. Finally, the described biosensor was used to detect the PTH levels in artificial serum samples.