Yazar "Ates, Nilay" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Lithium promotes long-term neurological recovery after spinal cord injury in mice by enhancing neuronal survival, gray and white matter remodeling, and long-distance axonal regeneration(Frontiers Media Sa, 2022) Balcikanli, Zeynep; Culha, Irem; Dilsiz, Pelin; Aydin, Mehmet Serif; Ates, Nilay; Beker, Mustafa Caglar; Baltaci, Saltuk BugraSpinal cord injury (SCI) induces neurological deficits associated with long-term functional impairments. Since the current treatments remain ineffective, novel therapeutic options are needed. Besides its effect on bipolar mood disorder, lithium was reported to have neuroprotective activity in different neurodegenerative conditions, including SCI. In SCI, the effects of lithium on long-term neurological recovery and neuroplasticity have not been assessed. We herein investigated the effects of intraperitoneally administered lithium chloride (LiCl) on motor coordination recovery, electromyography (EMG) responses, histopathological injury and remodeling, and axonal plasticity in mice exposed to spinal cord transection. At a dose of 0.2, but not 2.0 mmol/kg, LiCl enhanced motor coordination and locomotor activity starting at 28 days post-injury (dpi), as assessed by a set of behavioral tests. Following electrical stimulation proximal to the hemitransection, LiCl at 0.2 mmol/kg decreased the latency and increased the amplitude of EMG responses in the denervated hindlimb at 56 dpi. Functional recovery was associated with reduced gray and white matter atrophy rostral and caudal to the hemitransection, increased neuronal survival and reduced astrogliosis in the dorsal and ventral horns caudal to the hemitransection, and increased regeneration of long-distance axons proximal and distal to the lesion site in mice receiving 0.2 mmol/kg, but not 2 mmol/kg LiCl, as assessed by histochemical and immunohistochemical studies combined with anterograde tract tracing. Our results indicate that LiCl induces long-term neurological recovery and neuroplasticity following SCI.Öğe Short-Term Diet Restriction but Not Alternate Day Fasting Prevents Cisplatin-Induced Nephrotoxicity in Mice(Mdpi, 2020) Gunebakan, Evrin; Yalcin, Esra; Cikler Dulger, Esra; Yigitbasi, Ahmet; Ates, Nilay; Caglayan, Aysun; Beker, Mustafa C.Cisplatin (CP) is one of the most preferred platinum-containing antineoplastic drugs. However, even in nontoxic plasma concentrations, it may cause kidney injury. To be able to increase its effective pharmacological dose, its side effects need to be regarded. Diet restriction (DR) has been demonstrated to improve cellular survival in a number of disorders. In this context, we investigated the role of DR in CP-induced nephrotoxicity (CPN). Besides alternate DR, animals were exposed to DR for 3 days prior or after CP treatment. Here, we observed that both 3 days of DR reverses the nephrotoxic effect of CP, which was associated with improved physiological outcomes, such as serum creatine, blood-urea nitrogen and urea. These treatments significantly increased phosphorylation of survival kinases PI3K/Akt and ERK-1/2 and decreased the level of stress kinase JNK were noted. In addition, the activation level of signal transduction mediator p38 MAPK phosphorylation was higher particularly in both three-day DR groups. Next, animals were fed with carbohydrate-, protein- or fat-enriched diets in the presence of CP. Results indicated that not only fasting but also dietary content itself may play a determinant role in the severity of CPN. Our data suggest that DR is a promising approach to reduce CPN by regulating metabolism and cell signaling pathways.